

Experiments performed with the Beta dELayEd Neutron detector (BELEN) at JYFL & GSI/FAIR

ROGER CABALLERO-FOLCH (DFEN – UPC) RIKEN – Japan, 30 de juliol de 2013

- Beta delayed neutron emission measurements motivation
- BELEN ³He detection method and electronic chain
- JYFL experiments with BELEN 20 (2009-2010)
- GSI/FAIR experiments BELEN 30
- Summary, outlook and other tests:
 - ✓ LSC Canfranc
 - ✓ PTB with BELEN-48 (2013)

Nuclear structure: Study different aspects of nuclei. Provide information about their decay mechanism and structure.

Astrophysics. R-process nucleosynthesis: The delayed neutron emission modulates the final element abundances in the decay chain after the **r**-**process nucleosynthesis**

- It enhances the neutron density of the environment after freeze-out (reactivation).
- 2. It shifts the abundances towards lower masses (Pn: A \rightarrow A-1, P2n: A \rightarrow A-2, etc).

Nuclear reactor safety: Delayed neutron emission (decay heat) after fission is key to the safety and sustainability of the fission chain in the nuclear power reactor. New data is needed in the context of the nuclear fuel that will be used in the next generation of reactors.

slide 2 of 15

✓ The detection of the neutron is based on an indirect method: the detection of the products of the reaction of the neutron with ³He counters:

3 He + n \rightarrow 3 H + 1 H + 765 keV

Counters embeeded in a polyethylene matrix (version with 48 counters)

slide 4 of 15

It has been designed to maximize the detection efficiency and reduce its energy dependence in the energy range of interest (flat efficiency from a few keV to a few MeV).

3 He + n \rightarrow 3 H + 1 H + 765 keV

Experiments at IGISOL facility 2009 – 2010. Jyväskylä, Finland

Prototype designed with 20 ³He counters at 20 atm embedded in a polyethylene matrix around the beam hole in two concentric crowns. One with 8 counters at 9.5 cm and the outer with 12 counters at 14.5 cm

slide 6 of 15

A Ge detector was also used to check the gamma rays in coincidence and to identify the implanted ions.

Silicon detector was located in front of the tape

Different views of the experimental hall during measurements in JYFL -IGISIOL facility

slide 7 of 15

BELEN 20 design for JYFL experiments (2009 & 2010)

Some Pn values obtained and presented at ND2013 by J.L.Tain and at Bienal de Física by J. Agramunt & A.R.García

slide 8 of 15

Experiments at GSI -FRS facility 2011. Darmstadt, Germany

BELEN-30: 20 ³He (20 atm) & 10 ³He (10 atm)

Inner ring (10 counters): 29 cm

Outer ring (20 counters): 37 cm

Efficiency (1keV-1MeV) ~40%,

Efficiency at ~2MeV ~35% (Checked exp.)

Central hole radius: 11.5 cm - SIMBA Implantation detector

Experimental checking of the efficiency with a ²⁵²Cf source (M.Marta) MCNPX simulation efficiency

MCNPX simulation (2MeV):

(34.5±0.2)%

➢ Triggerless DACQ (IFIC) in MBS :

(35.4±0.8)% (Talk by J.Agramunt)

Analog branch:

(25.5±0.9)% (electronics)

slide 9 of 15

Large intensity (2x10⁹ ions/pulse) & high-energy (1 GeV/u) for ²³⁸U beams

The detection system is based on a stack of SSSD- and DSSD-detectors for measuring ion-implants and beta-decays (SIMBA). Implants-region was surrounded by the 4n neutron detector BELEN.

slide 10 of 15

BELEN 30: Implantation, β decay & neutron detection: SIMBA + BELEN

slide 11 of 15

Isomer tagging was used for Z identification and two centred settings on ²¹¹Hg and ²¹⁵Tl were measured during 4.5 days. The implantation area was optimized for Hg and Tl region where good resolution has been obtained. S323 was centered in ¹²⁷Pd and Ag nuclei.

slide 12 of 15

BELEN 30 S410 experiment preliminary half lives

slide 13 of 15

BELEN 30 S410 experiment preliminary beta – neutron correlations

SUMMARY: Tests and experiments with BELEN detector

Proton number Z

Neutron number N

slide 14 of 15

SUMMARY: Tests and experiments with BELEN detector

Background measurements at GSI (2010) and LSC Canfranc (2011) D.Jordan et al. Astr.Phys Vol.42, Feb 2013, p.1–6

slide 14 of 15

SUMMARY: Tests and experiments with BELEN detector

PTB : Efficiency calibration of the BELEN neutron detector. (June 2013)

slide 14 of 15

SUMMARY: BELEN versions and main design parameters

Name	³ He counters	Pressure (atm)	Experiment	Ratio @ 2 MeV	Ratio @ 5 MeV	Average efficiency	Central hole radius (cm)
BELEN-20	20	20	JYFL-2009	1.17	[1.60]	35% 2MeV	5.5
BELEN-20	20	20	JYFL-2010	1.17	[1.60]	45% -35% 1-5MeV	5.5
BELEN-30	20+10	20 & 10	GSI-2011	1.17	[1.70]	40 % 1MeV 35% 1 -5 MeV	11.5 (SIMBA)
BELEN-48	40+8	8 & 10	PTB JYFL-2013	1.02	1.16	54%-39% 2-5MeV	5.5
BELEN-48	40+8	8 & 10	DESPEC	1.04	1.15	45%-34%	8 (AIDA)

Observe: Central hole, num. counters & planarity

max(neutron efficiency)

To define the efficiency flatness for a range of neutron energies

$$Ratio = \frac{\max(\text{neutron efficiency})}{\min(\text{neutron efficiency})}$$

slide 15 of 15

BELEN characteristics

- ✓ Based on ³He counters embedded in a 4π polyethylene matrix .
- ✓ Optimized to maximize the efficiency and reduce its energy dependence in the energy range of interest.
- ✓ Laboratory tests and several successful experiments performed.
- ✓ The efficiency of the previous configurations has been validated experimentally with 252 Cf sources and some reference isotopes
- \checkmark Implantation detector characteristics determine the central hole
- \checkmark Number of counters and planarity is crucial for efficiency in the energy range
- ✓ Dimensions of presented versions: $90 \times 90 \times 80 \text{ cm}^3$ (including shielding)
- ✓ Approximate 700 kg weight

slide 15 of 15

BELEN ongoing work, improvements and management

- ✓ Improvements on BELEN efficiency simulations (Talk Guillem Cortès UPC)
- ✓ Specific triggerless DACQ provides a very low dead time. Digital data acquisition system developed at IFIC (Talk by J.Agramunt)
- \checkmark Integration of the acquisition system s

(RIKEN tracking detectors + AIDA + BELEN)

➢ Logistics for measurements with BELEN at RIKEN→ TO DISCUSS

- ✓ Transportation of the detectors (Counters & electronics)
 Price of UPC + GSI (52) counters: < 1000€ (Dang. G.Decl. Incl / Return?)
- ✓ Which part can be built at RIKEN (Japan)?
 - Polyethylene Matrix (due to the shipping cost)
- \checkmark Design of the support structure. Adapted to the experimental hall.
- ✓ Availability of neutron sources to test/calibrate the detector.
- ✓ Human resources.

slide 15 of 15

UPC (Barcelona) R.Caballero-Folch, F.Calviño, G.Cortès, A.Poch, C.Pretel, A.Riego, A.Torner **Old members:** M.B.Gómez-Hornillos, V.Gorlychev

IFIC (València) J.Agramunt, A.Algora, C.Domingo-Pardo, D.Jordan, J.L.Taín

GSI (Darmstadt – Germany) I.Dillmann, A.Evdokimov, M.Marta

CIEMAT (Madrid) D.Cano-Ott, T.Martínez, E.Mendoza, A.García

Contact: roger.caballero@upc.edu

Work supported by the Spanish Ministry of Economy and Competitivity under contract FPA 2011-28770-C03-03

JYFL 2009

JYFL 2009

GSI 2011

PTB 2013

GSI 2011

Contact: roger.caballero@upc.edu

