BRIKEN WORKSHOP:

"Opportunities with BELEN at RIKEN"

Beta dELayEd Neutron (BELEN) detector

ROGER CABALLERO-FOLCH

17 de desembre de 2012 València

Concept	Detection System	Previous versions	New designs
Contents			

- The concepts of β-delayed neutron emission
- Detection system
- Previous versions used at JYFL and GSI
- New designs and conclusions

Concept	Detection System	Previous versions	New designs
Contents			

The concepts of β-delayed neutron emission

Detection system

- Previous versions used at JYFL and GSI
- New designs and conclusions

Example of β delayed neutron emission

β -delayed neutron emission - Applications

Theoretical predicitons with large uncertainty

Neutron emission probablity (Pn)

✓ Predictions for P_n are also
 very different depending on
 the (unknown) nuclear
 deformation.

Information from K.-L. Kratz, (priv. comm. 2010)

- ✓ Detector with large efficiency is needed due to the low production of nuclei of interest in actual facilities.
- $\checkmark\,$ RIKEN can be a unique opportunity to measure the most exotic nuclei.

- The concepts of β-delayed neutron emission
- Detection system

- Previous versions used at JYFL and GSI
- New designs and conclusions

 \checkmark The detection of the neutron is based on an indirect method: the detection

of the products of the reaction of the neutron with ³He counters:

 3 He + n \rightarrow 3 H + 1 H + 765 keV

Electronic chain for data acquisition and signal processing

Concept	Detection System	Previous versions	New designs
Contents			

- The concepts of β -delayed neutron emission
- Detection system
- Previous versions used at JYFL and GSI
- New designs and conclusions

The geometry design is based in two crowns. The aim is to have a flat difference in efficiency in the energy range of interest (100 keV – 5 MeV).

✓ Developed by V.Gorlychev and B.Gomez at UPC-Barcelona

Tests and experiments with **BELEN** detector

BELEN design for **JYFL** experiments

Support structure requirements:

Hold and transport 650 Kg Allow access to the beam hole Movable in Z for fine placement Table + tray movable on "z" on rails Polyethylene block hold together and can be lifted as a single unit.

Polyethylene: 10 cm thick vertical slices assembled => 90 x 90 x 80 cm3 ~650 Kg detector

JYFL experiment 2009 & 2010 - BELEN-20

20 ³He counters at 20 atm

1ST ring: 8 counters at 11 & 9.5 cm

2nd ring: 12 counters at 20 & 14.5 cm

Average efficiency: 27% & 35%

Dimensions: $50x50x80 \text{ cm}^3 + \text{shielding} (90x90x80 \text{ cm}^3)$

Diameter holes: 2.75 cm

Central hole: 5.5 cm

JYFL ion implantation system

S410/S323 experiments at GSI (2011). Design & efficiency.

BELEN-30 20 ³He (20 atm) + 10 ³He (10 atm) Inner ring (10 counters): 29 cm Outer ring (20 counters): 37 cm

Efficiency (1keV-1MeV) ~40% Average up to 5MeV ~ 35%

²⁵²Cf neutron source detection efficiency (M.Marta):

- MCNPX simulation: (34.5±0.2)%
- Triggerless DACQ (IFIC) in MBS : (35.4±0.8)%
- > Analog branch: (25.5±0.9)% (electronics)

✓ Dimensions: 90 x 90 x 80 cm³

S410/S323 experiments at **GSI**. Ion implantation system.

Silicon Implantation Beta Absorber (SIMBA)

SIMBA detector: (SSSD & DSSD) 60x40x1 mm³

Front view

Technische Universität Munchen

PhD thesis C. Hinke, TUM (2010) Diploma thesis K. Steiger, TUM (2009)

Summary of tests and experiments

BELEN-20 (20atm) for JYFL. Experiments at JYFLTRAP (Finland). Measurements of β delayed neutron emission of fission fragments (UPC, IFIC, CIEMAT):

A~80-95 with Nuclear structure and Astrophysics interest.

and Canfranc underground laboratory (July 2011).

BELEN-30 (20 (20atm), 10 (10 atm)) for FRS-GSI. Two experiments at GSI with & SIMBA September 2011, nuclei of astrophysical interest:

S323 & S410 experiments, isotopes around regions of ¹²⁸Pd, ²¹⁵Tl, ²¹¹Hg in collaboration with MSU and ND.

BELEN-48 (2013) Efficiency calibration measurements at PTB (Germany) and experiment at JYFL with ongoing design.

Concept	Detection System	Previous versions	New designs
Contents			

- The concepts of β-delayed neutron emission
- Detection system
- Previous versions used at JYFL and GSI
- New designs and conclusions

С	on	ce	pt
-			

BELEN versions designed

Name	³ He counters	Pressure (atm)	Experiment	Average Efficiency	Central hole radius (cm)
BELEN-20	20	20	JYFL-2009	27%	5.5
BELEN-20	20	20	JYFL-2010	35%	5.5
BELEN-30	20+10	20 & 10	GSI-2011	35 %	11.5 (SIMBA)
BELEN-48	40+8	8 & 10	JYFL-2013	37%-52%	6
BELEN-48	40+8	8 & 10	RIKEN	34%-50%	8 (AIDA)
BELEN 48	40+8	8 & 10	RIKEN	???	Local imp. detector

See differences:

- Central hole
- Number of counters
- Distance of rings

BELEN design parameters

- \checkmark Define the range of energy of the neutrons to be optimized
 - Efficiency Vs energy (flat efficiency in the energy range of interest: 100keV
 - 5MeV)
- \checkmark Knowledge of the estimation neutron background to decide the shielding
- ✓ Radius of central hole \rightarrow Implantation detector and beamsize (see table at *Previous versions* section)
- \checkmark Number of counters available \rightarrow Polyethylene matrix

R1 Distribution of the energy of the neutrons. Levels between Qb and Bn Roger; 14/12/2012

(C	0	n	С	e	p	t
	-	-		_	-	-	-

Optimized for range 100 keV – 5 MeV

Radius 6 cm

Optimized for range 100 keV – 1 MeV

Radius 6 cm

Optimized for range 100 keV – 1 MeV

Radius 6 cm

Efficiency comparison of three examples

BELEN design in progress for **RIKEN** with **AIDA**

Optimized for range 100 keV – 5 MeV

Radius 8 cm

BELEN design in progress for **RIKEN** with **AIDA**

Optimized for range 100 keV – 1 MeV

Radius 8 cm

BELEN design in progress for **RIKEN** with **AIDA** (8cm central hole)

Summary & RIKEN management

 \checkmark BELEN is a 4pi neutron detector designed to study beta delayed neutron emission.

✓ Laboratory tests and several successful experiments performed.

✓The efficiency of the previous configurations has been validated

experimentally with ²⁵²Cf sources and some reference isotopes

- > Logistics for measurements with BELEN at RIKEN \rightarrow TO DISCUSS tomorrow!
 - \checkmark Think about transportation of the detector (Counters & electronics).
 - ✓Which part can be built in RIKEN? (Polyethylene matrix, support).
 - ✓ Design of the support structure. Adapted to the experimental hall.
 - \checkmark Possibility to commission BELEN at RIKEN.
 - ✓A campaign of measurements for optimizing resources?
 - ✓Availability of neutron sources to test/calibrate the detector.
 - \checkmark Integration of the acquisition system.
 - ✓Human resources.

UPC (Barcelona)

R.Caballero-Folch, F.Calviño, G.Cortès, A.Poch, C.Pretel, A.Riego, A.Torner **Old members:** M.B.Gómez-Hornillos, V.Gorlychev

IFIC (València) J.Agramunt, A.Algora, C.Domingo-Pardo, D.Jordan, J.L.Taín

GSI (Darmstadt – Germany) I.Dillmann, A.Evdokimov, M.Marta

CIEMAT (Madrid) D.Cano-Ott, T.Martínez, E.Mendoza, A.García

Work supported by the Spanish Ministry of Economy and Competitivity under contract FPA 2011-28770-C03-03

Digital Data Acquisition System (DDAS)

Triggerless digital data acquisition system:

 \checkmark Struck digitizer modules (SIS3302): provide time-stamps very versatile for time correlations

✓Negligible dead-time when compared to analog systems

 \checkmark Increase the efficiency by about 8% (from 27 to 35%)

 \checkmark Flexibility for large time correlation (fundamental to obtain correlations with

all neutron and to change the gates offline)
✓Allows to correct some experimental effects, e.g.
To reduce neutron background from uncorrelated neutrons

✓ Developed at IFIC (València-Spain)

Talk of this part by Jorge Agramunt

Performance test time correlation between neutron and β -decay for ²¹³Tl

$$P_{n} = \frac{1}{\varepsilon_{n}} \frac{N_{n\beta}}{N_{\beta}}$$

Source to test the efficiency

