β delayed neutron emission measurements around the third r-process peak R.Caballero-Folch ${ }^{\mathbf{1}}$ and the $\mathbf{S 4 1 0}$ experiment Team ${ }^{1}$ Universitat Politècnica de Catalunya (UPC) - Barcelona (Spain)

INTRODUCTION: About half of the elements heavier than iron are produced in the Universe by means

 of \boldsymbol{s}-process (slow) and r-process (rapid) neutron capture reactions and subsequent $\boldsymbol{\beta}$-decays

Exotic nuclei along the neutron-shell closure $\mathrm{N}=126$ act as a bottleneck, thus originating the third r-process abundance peak. At present, this is one of the regions most difficult to reproduce with r-process model calculations. To a large extent, this can be attributed to scarce experimental information available for β decay half-lives, masses and β-delayed neutrons, and the uncertain performance of nuclear models far-off stability.

Nuclei identified in this study, some of them for first time: ${ }^{200-205} \mathrm{Pt},{ }^{203-209} \mathrm{Au},{ }^{206-214} \mathrm{Hg},{ }^{209-218} \mathrm{~T},{ }^{212-223} \mathrm{~Pb}$, ${ }^{218-227} \mathrm{Bi},{ }^{222-231} \mathrm{Po},{ }^{228-234} \mathrm{At},{ }^{231-237} \mathrm{Rn}$

EXPERIMENT: Measurement of $\boldsymbol{\beta}$-delayed neutrons around the third r-process peak (GSI-2011)

Goal: to measure for first time half life and β-delayed neutron emission probability $\left(P_{n}\right)$ for many exotic nuclei around the third r-process peak Delayed neutron emission shifts the abundances towards lower masses and enhances the neutron density in the r-process environment. New experimental data will give an important constraint for theoretical models and a valuable input for r-process model calculations.
$\underset{\text { RIB facility of GSI - Darmstadt (Germany) }}{\text { Beam character }}$

Implantation and $\boldsymbol{\beta}$ detector (SIMBA)
Based on DSSD silicon layers

Beta deLayEd Neutron detector (BELEN)

\checkmark Based on ${ }^{3} \mathrm{He}$ counters to detect neutrons
${ }^{3} \mathrm{He}+\mathrm{n} \rightarrow{ }^{3} \mathrm{H}+{ }^{1} \mathrm{H}+765 \mathrm{keV}$
\checkmark Matrix: Polyethylene as moderator
\checkmark Weight: approx 700 kg
\checkmark Dimensions: $80 \mathrm{~cm} \times 80 \mathrm{~cm} \times 60 \mathrm{~cm}$

Name	${ }^{3} \mathrm{He}$ counters	Pressure	Experiment	Average Efficiency
BELEN-20	$\mathbf{2 0}$	$\mathbf{2 0}$ atm	JYL-2009	$\mathbf{2 7 \%}$
BELEN-20	$\mathbf{2 0}$	$\mathbf{2 0}$ atm	JYL-2010	$\mathbf{3 5 \%}$
BELEN-30	$20+10$	$20 \& 10$ atm	GSI-2011	$\mathbf{4 0} \%$
BELEN-52	$42+10$	$8 \& 10$ atm	JYL-2013	In progress
BELEN-96	$42+10+44$	$8 \& 10$ atm	DESPEC	In progress

Challenge: Wide range of neutron energies (thermal - $\mathbf{5} \mathbf{~ M e V}$): Approach: detector design providing an efficiency as high and as flat as possible

BELEN-30 detector efficiency

Designed and constructed at UPC (Barcelona-Spain)

Digital Data Acquisition System (DDAS) \checkmark Negligible dead-time when compared to analog systems. \checkmark Digitizer modules (SIS3302 Struck) provide time-stamps: very versatile for time correlations.
Developed at IFIC (València-Spain)

PRELIMINARY RESULTS IDENTIFICATION: Z and A / Z

Number of implants observed for ${ }^{211} \mathrm{Hg}$ setting and rates Implants/Identifications for each isotope

Performance test via decay-neutron time correlations for ${ }^{213} \mathrm{~T}$

