The *r-process* and the Universe nucleosynthesis New measurements for relevant data around N=126

R.Caballero-Folch¹, C.Domingo-Pardo², J.L.Taín², J.Agramunt², M.B.Gómez-Hornillos¹, K.Smith⁴, F.Montes⁵, G.Cortès¹, F.Calviño¹, C.Pretel¹, A.Poch¹, A.Riego¹, et al. 1-UPC (Barcelona), 2-IFIC (València), 3-GSI (Darmstadt-Germany), 4-Notre Dame (Indiana-USA), 5-MSU (Michigan-USA)

The quest for the origin of the elements...

- What are the limits of the nuclear existence?
- Which is the heaviest element that can be produced?
- How have been the elements and isotopes in the Universe synthesized?
- What is the site(s) in the Universe for the r-process nucleosynthesis?

The nucleosynthesis of light elements is produced in common stars via

nuclear fusion processes Fusion up to iron is possible according to binding energy per nucleon Nuclei beyond iron (Fe) are produced by means of neutron capture reactions, s-process (slow) and r-process (rapid), and beta decays

89 90 91 92 93 94 95 96 97 98 98 89 8 Rh Rh

- Slow neutron capture process
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96

 Ru
 Ru</ produces the elements between iron and bismuth by means of
- The r-process takes place in environments with high neutron fluxes such as Super Nova

Site of s-process has been clearly identified as the asymptotic Giant Branch stars

EXPERIMENT: Measurement of β -delayed neutrons around the third r-process peak (2011)

The aim: to obtain half lives $(T_{1/2})$ and β -delayed neutron emission probability (P_n) of nuclei around the region N=126

The delayed neutron emission modulates the abundance curve in stellar nucleosynthesis. New experimental data will give an important input to r-process model calculations and will extend limits of nuclei chart

Beam characteristics

RIB facility of GSI - Darmstadt (Germany)

Ducalization

Separation method:

Bρ - Time of Flight - Bρ

Production Target

β delayed neutron theory

Emitter

126	²⁰⁹ 82 Pb 127	²¹⁰ 82 Pb 128	²¹¹ 82 Pb 129	²¹² 82 Pb 130	²¹³ Pb 131
	3,253 hr 9/2+ β-	22,20047 yr 0+ β- 100 € ∝ 0.000001.	36,1 min 9/2+ β-	10,64 hr 0+ β-	10,2 min 9/2+ β-
126	²⁰⁸ T 1 127		210 TL 129	²¹¹ 81 TL 130	²¹² 81 TL 131
in 1/2+ -	3,053 min 5+ β-	2,2 min 1/2+ β-	1,3 min 5+ β- 99.9915 % β-,n 0.0085 %	l min Unkn β-	l,ll667 min Unkn β-
126	²⁰⁷ 80 Hg 127	²⁰⁸ Hg ₁₂₈	²⁰⁹ 80 Hg 129	²¹⁰ Hg ₁₃₀	
+	2,9 min 9/2+ β-	41,5 min 0+ β-	36,5 s Unkn β−	2,43333 min 0+ β-	
126					

Example of 6 delayed neutron decay

Implantation and B detector

Based on DSSD silicon layers

SIMBA detector

Neutron spectra obtained

Beta deLayEd Neutron detector (BELEN)

Final Nucleus

UPC

Precursor

Designed by GRETER research group (UPC)
 Mean
 570.3

 RMS
 230.6

 Integral
 1.035e+005
Neutron detector efficiency S1400 Based on ³He counters with the reaction: $N_{n\beta}$ D 01200 3 He + n \rightarrow 3 H + 1 H + 765 keV \mathcal{E}_n Noise 1000 Neutron signal 0.35 0.3 800 Pulser 0.25 600 0.2 30 ³He counters 0.15 He 20 + 10 SIMB/ for this experiment 400 tst crowr 0.1 200 10-2 10⁻¹ Neutron energy (MeV 1000 1100 Energy (ch) 500 600 700 800 900 200 300 400 Work supported by the Spanish Ministry of Ciemat MICHIGAN STATE **GSJ** MINISTERIO Economy and Competitivity under contract **DE CIENCIA** Centro de Investigacion Energéticas, Medioambientales UNIVERSITY E INNOVACIÓN FPA 2011-28770-C03-03 y Tecnológicos